Numerical Optimization for Symmetric Tensor Decomposition
نویسنده
چکیده
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued vectors. Algebraic methods exist for computing complex-valued decompositions of symmetric tensors, but here we focus on real-valued decompositions, both unconstrained and nonnegative. We discuss when solutions exist and how to formulate the mathematical program. Numerical results show the properties of the proposed formulations (including one that ignores symmetry) on a set of test problems and illustrate that these straightforward formulations can be effective even though the problem is nonconvex.
منابع مشابه
Numerical optimization of a sum-of-rank-1 decomposition for n-dimensional order-p symmetric tensors
In this paper, we present a sum-of-rank-1 type decomposition and its differential model for symmetric tensors and investigate the convergence properties of numerical gradient-based iterative optimization algorithms to obtain this decomposition. The decomposition we propose reinterprets the orthogonality property of the eigenvectors of symmetric matrices as a geometric constraint on the rank-1 m...
متن کاملFundamental Tensor Operations for Large-Scale Data Analysis in Tensor Train Formats
We discuss extended definitions of linear and multilinear operations such as Kronecker, Hadamard, and contracted products, and establish links between them for tensor calculus. Then we introduce effective low-rank tensor approximation techniques including Candecomp/Parafac (CP), Tucker, and tensor train (TT) decompositions with a number of mathematical and graphical representations. We also pro...
متن کاملIterative Methods for Symmetric Outer Product Tensor Decomposition
We study the symmetric outer product for tensors. Specifically, we look at decomposition of fully (partially) symmetric tensor into a sum of rank-one fully (partially) symmetric tensors. We present an iterative technique for the third-order partially symmetric tensor and fourthorder fully and partially symmetric tensor. We included several numerical examples which indicate a faster convergence ...
متن کاملCompletely Positive Tensors: Properties, Easily Checkable Subclasses, and Tractable Relaxations
The completely positive (CP) tensor verification and decomposition are essential in tensor analysis and computation due to the wide applications in statistics, computer vision, exploratory multiway data analysis, blind source separation, and polynomial optimization. However, it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification and decomposition, more...
متن کاملEstimating a Few Extreme Singular Values and Vectors for Large-Scale Matrices in Tensor Train Format
We propose new algorithms for singular value decomposition (SVD) of very large-scale matrices based on a low-rank tensor approximation technique called the tensor train (TT) format. The proposed algorithms can compute several dominant singular values and corresponding singular vectors for large-scale structured matrices given in a TT format. The computational complexity of the proposed methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 151 شماره
صفحات -
تاریخ انتشار 2015